
J. Parallel Distrib. Comput. 79–80 (2015) 90–103
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Cluster-to-cluster data transfer with data compression over
wide-area networks✩

Eun-Sung Jung ∗, Rajkumar Kettimuthu, Venkatram Vishwanath
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA

h i g h l i g h t s

• Wemodel all the system components involved in end-to-end data transfer as a graph.
• We formulate the problem to optimize data transfer throughput using parallel flows.
• We propose a novel software I/O stack with variable parallel data flows per layer.
• Optimized parallel data flows improve overall data transfer throughput.
• The novel I/O stack with data compression alleviates network bottleneck situations.

a r t i c l e i n f o

Article history:
Received 19 November 2013
Received in revised form
10 May 2014
Accepted 17 September 2014
Available online 28 September 2014

Keywords:
Disk-to-disk data transfer
System modeling
Optimization
High-speed networks

a b s t r a c t

The recent emergence of ultra high-speed networks up to 100 Gb/s has posed numerous challenges
and has led to many investigations on efficient protocols to saturate 100 Gb/s links. However, end-to-
end data transfers involve many components, not only protocols, affecting overall transfer performance.
These components include disk I/O subsystem, additional computation associated with data streams,
and network adapters. For example, achievable bandwidth by TCP may not be implementable if disk I/O
or CPU becomes a bottleneck in end-to-end data transfer. In this paper, we first model all the system
components involved in end-to-end data transfer as a graph. We then formulate the problem whose
goal is to achieve maximum data transfer throughput using parallel data flows. We also propose a
variable data flow GridFTP XIO stack to improve data transfer with data compression. Our contributions
lie in how to optimize data transfers considering all the system components involved rather than in
accurately modeling all the system components involved. Our proposed formulations and solutions are
evaluated through experiments on the ESnet 100G testbed and awide-area cluster-to-cluster testbed. The
experimental results on the ESnet 100G testbed show that our approach is several times faster thanGlobus
Online—8 × faster for datasets with many 10 MB files and 3–4 × faster for other datasets of larger size
files. The experimental results on the cluster-to-cluster testbed show that our variable data flow approach
is up to 4× faster than a normal cluster data transfer.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Scientific workflows are getting more data-intensive as tech-
nology advances in sensors, sequencers, detectors, etc. make

✩ The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (‘‘Argonne’’). Argonne, a US Department
of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The US Government retains for itself, and others acting on its behalf,
a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.
∗ Corresponding author.

E-mail addresses: esjung@mcs.anl.gov (E.-S. Jung), kettimut@mcs.anl.gov
(R. Kettimuthu), venkatv@mcs.anl.gov (V. Vishwanath).

http://dx.doi.org/10.1016/j.jpdc.2014.09.008
0743-7315/© 2014 Elsevier Inc. All rights reserved.
abundant data available for analysis. In addition, distributed high-
performance computing resources, such as supercomputers, make
data movement among geographically distributed sites a major
factor that should be taken into account for efficient and reli-
able scientific workflowmanagement. The increasing amount and
complexity of data flows require sophisticated data flow orches-
tration. Especially, end-to-end data transfers involvemany compo-
nents affecting the overall transfer performance. Disk-to-disk data
transfers startwith disk reads, go through data processing and data
transmission over network, and end up with disk writes. But the
process is not simple. For example, disk reads may involve mul-
tiple disks on which data are distributed randomly or with some
rules.

The recent emergence of high-speed network up to 100 Gb/s
has posed considerable challenges and many studies have been

http://dx.doi.org/10.1016/j.jpdc.2014.09.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.09.008&domain=pdf
mailto:esjung@mcs.anl.gov
mailto:kettimut@mcs.anl.gov
mailto:venkatv@mcs.anl.gov
http://dx.doi.org/10.1016/j.jpdc.2014.09.008


E.-S. Jung et al. / J. Parallel Distrib. Comput. 79–80 (2015) 90–103 91
conducted on new 100G high-speed networks. In [1], various data
transfer middleware such as GridFTP [2] and SRM [3] has been
evaluated to determinewhether they can saturate a 100G network
link. The results in [1] show that they can achieve 80–90 Gb/s in
case ofmemory-to-memory data transfer,where the system’s RAM
buffer cache is big enough to hold the entire dataset, so the dataset
is loaded into memory before data transfer.

Such performance improvements have resulted from several
research areas. First, the attempts to optimize network protocols
have brought enhanced network throughput. The Globus eXten-
sible Input/Output System (XIO) [4] provides a framework and
API for applications to use different transport protocols without
changing the application code. RDMA-based protocols have been
evaluated and compared with common protocols such as TCP for
high-performance data transfers [5]. The results show that RDMA-
based protocols can achieve 10 Gb/s data transferwithmuch lower
operating system overheads and much less host CPU consump-
tion. Another research area focuses on exploiting multiple flows to
achieve high-performance data transfer. For example, GridFTP uti-
lizes pipelining [6] and concurrency [7] to offset protocol overhead
for small files.

However, because of the lack of a holistic approach to end-
to-end data transfer, achieving high-performance data transfer is
difficult in varying hardware and software environments. End sys-
tems are becoming more and more complex and heterogeneous.
System hierarchy is becoming deep and complex with multi-
dimensional topologies. Applicationsmust be smart enough to take
advantage of parallelism in various sub-systems. So far, manual
hardware and software tuning has been needed in order to fig-
ure out what configurations are to be set to meet the required data
transfer rate. In this paper, we address this problem by modeling
system components involved in data transfer and solving mathe-
matically formulated problems.

In this paper, we focus on optimizing parallel flows and CPU
loads in end-to-end data transfers.We first showhow the through-
put for datasets with many files can be improved through opti-
mizing the number of parallel flows under constraints of CPU, disk
I/O, and so on. For many applications, the individual file sizes in
the dataset are still small with respect to increasing bandwidth-
delay products even though the total volume of the datasets has
increased significantly in the past decade. For large files, the ap-
proach of splitting a file into multiple chunks and transferring the
chunks simultaneously improves the performance. However, the
same approach does not work with small files—it can even hurt
the performance. We show that our approach improves the per-
formance significantly compared with GridFTP and Globus Online,
by optimizing parallel data flows.

We propose a new I/O architecture with variable data flows to
better improve data transfer throughput. This is motivated by our
observation that the same number of data flows at each software
I/O layer does not lead to efficient utilization of system resources.
For example, the optimal number of data flows from a disk is
just one from the view point of throughput whereas the optimal
number of data flows for compression is more than one (ideally, it
should be equal to the number of cores) to harness the multi-cores
in the host to themaximum. In addition, we propose a cluster-wise
data transfer algorithm to determine the number of hosts at each
cluster such that the data transfer throughput between clusters is
maximized when the hardware configuration of the hosts in the
same cluster is assumed to be homogeneous.

The remainder of the paper is organized as follows. In Section 2,
we describe preliminaries and relatedwork to help understand the
context of our work and highlight our contributions. In Section 3,
we present graph-based system modeling and data transfer op-
timization algorithms. In Section 5, we present a novel software
architecture for enhanced high-throughput data movement and
cluster-wise data transfer optimization algorithms. In Section 6,
we evaluate our approaches in two different testbeds, one ofwhich
represents high-speednetworks, and the other ofwhich represents
a cluster-to-cluster data transfer especially when network band-
width is a bottleneck. In Section 7, we briefly summarize ourwork.

2. Preliminaries and related work

2.1. Globus Toolkit and GridFTP

With the proliferation of grid computing, many grid comput-
ing software packages facilitating executing distributed applica-
tions on grid resources have been proposed and developed. Among
such software packages, the Globus Toolkit [8] is an open source
software package for building grids, and GridFTP is a data move-
ment tool in the Globus Toolkit in replacement of ftp, the early
well-known file transfer tool. GridFTP has been widely adopted by
numerous research institutes for efficient data sharing among
collaborative scientists. Globus Online [9] provides a more user-
friendly web-based interface and a more reliable and secure file
transfers on top of GridFTP.

More specifically, GridFTP has exploited parallelism in many
ways for enhanced data transfer throughput with regard to the
typical FTP service [10,11]. First, GridFTP provides users with a
control parameter for the number of TCP streams. The multiple
TCP streams enable an application to fully utilize available net-
work bandwidth because a single TCP stream usually shows saw-
shaped utilization due to its AIMD (additive increasemultiplicative
decrease) property. Another GridFTP feature using parallelism in
network protocols is pipelining FTP protocol message changes re-
garding lots of small files (LOSF) transfer [12]. Pipelining allows a
client to send many unacknowledged transfer commands at once
in order to mitigate the overhead of waiting ACKs for file transfer
requests sequentially. In addition, GridFTP allows a client to use
concurrent file reads from disks, called concurrency, by launching
multiple GridFTP servers, which can be regarded as exploitation of
data flow parallelism. Overall, we can take two examples, one 10
GB file transfer and many 10 MB file transfer, for the illustration
of functions described above. For the former case of one 10 GB file
transfer, wemay set the number of TCP streams to 3,which leads to
three threads sending 3 partitions of a 10 GB file in 3 TCP streams.
For the latter case of many 10 MB file transfers, we may set the
number of concurrent file reads to 3, which leads to three threads
reading and sending different files concurrently. From the perspec-
tive of data flows, once the number of data flows can be set by users
according to the system configuration and dynamic status such as
network congestion, it is usually assumed and implemented that
one flow is not split into multiple flows in the course of transfer-
ring. For instance, if one process reads data from a disk, the same
process usually compresses the data to send over networks. How-
ever, if multiple threads for compression are employed, the one
data flow from a disk can be split into multiple data flows. Our ap-
proach in this paper models and optimizes split and merge of data
flows to improve the overall data transfer throughput.

Beyond one-to-one data transfer (one single host to another
single host data transfer), m-to-n data transfer (one cluster to
another cluster data transfer) is also supported byGridFTP, through
striped servers [2]. This m-to-n data transfer was further extended
by dynamic data transfer node provisioning in [13].

Alongwith scalability through striped servers, GridFTP achieves
flexibility through an extensible input/output (XIO) framework [4].
Basically, the Globus XIO framework provides a user with a
dynamically stackable software architecture with regard to simple
open/close/read/write (OCRW) file operations as in Fig. 1. Globus
XIO framework moves user data to the driver stack, which is
dynamically configured by a user, and manages the interactions



92 E.-S. Jung et al. / J. Parallel Distrib. Comput. 79–80 (2015) 90–103
Fig. 1. Globus XIO framework.

between stacked drivers. There are two classes of drivers, transform
and transport drivers. Transform drivers are doing some data
processing such as compression. Some examples of transform
drivers include popen [14] and compression driver [4], which
perform Unix command and compression operations on data,
respectively. Transport drivers are located at the bottom of a
driver stack and are responsible for sending data outside. Some
examples of transport drivers [15] include TCP and UDT protocol
drivers. Users can write their own drivers along with default
drivers supported by the Globus Toolkit. Putting all together, say
we want to send files to a remote host via TCP protocol after
encrypting and compressing. We can configure the driver stack
such that a TCP driver is located at the bottom, and a compression
and an encryption driver are placed on top of the TCP driver. The
limitation of the current implementation is that all data processing
is performed by a single thread. In this paper, we propose a
multi-threadedXIO framework to overcome the limitation. Given a
multi-threaded XIO framework, the optimized resource allocation
is also crucial for maximal data transfer throughput.

2.2. Optimizing data transfer

Recently many studies have been conducted on new 100G
high-speed networks. Several studies including our work have at-
tempted to optimize the disk transfer throughput in a holistic way
by considering all involved system components such as disks and
CPUs [16,17]. In [17], the authors proposed heuristics to deter-
mine the optimal number of streams and disk/CPU stripes. In our
work [16], we formulated the problemasmixed-integer linear pro-
gramming (MILP) based on a graph model capturing the system
topology and characteristics, which ismore flexible in terms of sys-
tem configuration changes and additional computations. However,
because split or merge of data flows is not assumed in the system
model, we need to extend the previous formulations such that ap-
propriate number of data flows/threads at each driver in XIO driver
stack are determined. The new system models and formulations
will be presented in detail in the following sections.

2.3. Data compression

Data compression has been used in various areas such as
multimedia and network domains to improve disk space usage
and data transmission time. Recently, motivated by rapid growth
of available CPU resources, several studies tried to utilize data
compression for I/O throughput in high performance computing
systems. In [18], the feasibility of data compression in the I/O
forwarding layer was shown through extensive experiments on
various compression libraries and datasets in the context of high-
performance computing clusters. In [19], efficient data forwarding
algorithms using data compression in supercomputers have been
proposed. In [20], a framework incorporating various compression
and decompression as well as customized compression algorithms
for scientific datasets was presented. Data compression is useful
Fig. 2. Data flow graph model.

in situations where network bandwidth is a major bottleneck and
CPU resources are relatively abundant in the case of one-to-one
data transfer or when many applications or hosts are contending
for network resources as in the case of m-to-n data transfer. We
can think of this problem as balancing allocations of network and
CPU resources.

Our work focuses on optimizing the throughput of end-to-end
data transfers in wide-area networks using data compression. Our
work differs from the previouswork in thatwe propose the layered
data processing frameworkwith different number of data flowsper
layer and algorithms for determining proper numbers of data flows
in layers.

3. Optimizing single-node disk-to-disk data transfer

In this section, we describe how to model system components
relevant to end-to-end data transfer, and we formulate the
problem mathematically based on models. We will call this the
single-node data transfer (SNDT) problem for the rest of the paper.

3.1. System modeling

In this section, we discuss how we can model each component
of the system so that we can develop optimization formulations to
solve.

The overall system can bemodeled as a graph as shown in Fig. 2.
In the graph, there are five classes of nodes, and edges that link ad-
jacent nodes. The five classes of nodes are disk node, data channel,
computation node, NIC, and logical node. A node is not associated
with any attribute, but an edge is associated with attributes de-
scribing a node’s characteristics. Data channel nodes reflect con-
tention among data flows. For example, if all disks are connected
to only one disk interface adapter, maximum disk throughput may
not scale linearly as the number of disks increases due to data con-
tention. Logical nodes are inserted for explicit data flow start and
end in a graph model. The CPU cores are not expressed explicitly
as a node but are put implicitly as costs on edges and constraints
in the resulting formulations.

Two attributes are assigned on an edge. One is capacity/band-
width of a source node. The other is cost of a data flow on the
edge. Both attributes can be either a constant value or a function
of some parameters originating fromunderlying systembehaviors.
Depending on two end nodes linked by an edge, the edge has dif-
ferent attributes. First, the edge linking from a logical start node
to a disk node, logical edge, is a logical link with unlimited band-
width and zero cost function. Second, the edge linking from a disk
or data channel node to any other node, disk edge, represents a
disk I/O path from a disk or data channel. Third, the edge linking
from a computation node to another computation node or a NIC
node, compute edge, represents a data flow going through com-
putations such as GridFTP and compression computation. Fourth,
the edge linking from a NIC node to a logical end node, network



E.-S. Jung et al. / J. Parallel Distrib. Comput. 79–80 (2015) 90–103 93
edge, represents a network path from a source node to a destina-
tion node. Each edge is associatedwith a bandwidth function and a
cost function. A bandwidth function and a cost function of an edge
describe the performance throughput and CPU resource consump-
tion of a source node, respectively. In the following subsections,
we describe each edge’s attributes and associated modeling in
detail.

3.1.1. Disk modeling
A disk edge is associatedwith disk capacity/bandwidth and CPU

load related to disk I/O operations. Even though many parameters
such as disk cache size are involved in disk I/O bandwidth, the
number of data flows per disk is the most important variable
assuming that other parameters are fixed and not adjustable.

Eq. (1) computes the utilization of a disk as a function of the
number of processes and disk access probability [21]. Here p is
a ratio of request data size and the stripe size of a RAID disk. If
we assume that file size or request data is bigger than the stripe
size of a disk, p can be substituted by 1. The resulting equation is
U ≃ 1/(1 + γd

L ), which means the disk utilization increases to
some extent as the number of processes increases. γd is a constant
to take into account other factors in disk performance such as block
size and disk cache.

U ≃ 1/

1+

1
L


1
p
− 1+ γd


U: Utilization
L: Number of processes issuing requests
p: Probability that a request will access a given disk
γd: Empirically calibrated value

(1)

The disk throughput can be determined by Eq. (2) in which the
disk utilization in Eq. (1) is multiplied by N·SU

E(S) . The equation can
be rearranged as Eq. (3) after substituting N·SU

E(S) by αd
L , where αd =

N ·SU , since E(S), the expected service time of a given disk request,
is proportional to L. We can determine αd and γd in Eq. (3) through
experimental values. The cost function associated with a disk edge
represents the CPUusage for disk I/O fromadisk to kernelmemory.
Since the disk I/O operation is done asynchronously through a
hardware interrupt and CPU is not involved at all, we set the cost
function for a disk edge to zero. Additional operations such as
memory copies for actual reads by an application are accounted
by computation modeling in the next section.

T =
U · N · SU

E(S)
T : Throughput
U: Utilization
N: Number of disks in a RAID disk
SU: Stripe size
S: Service time of a given disk request

(2)

T =
1

1+ γd
L

·
αd

L
=

αd

L+ γd
αd, γd: Empirically calibrated value

(3)

If the source node is a data channel node, the disk edge can be
associated with this bandwidth function when the data channel
node has fan-in disk nodes, or the disk edge can be associated with
infinite bandwidth when the data channel node has fan-out nodes.

Eq. (3) will be used as the bandwidth function Bn
lk in Section 3.2

and approximated by a linear/quadratic function for linear pro-
gramming solver such as cplex [22].

3.1.2. Computation modeling
A compute edge is the edge whose source node is a computation

node, and it has attributes of linear bandwidth and cost functions.
The bandwidth function is a function of the number of flows as in
Eq. (4), and the cost function can be defined as in Eq. (5).

T = αcns + γc
ns: Number of parallel data transfer streams
αc, γc : Empirically calibrated value

(4)

C = βcr
C: CPU load
r: Data flow rate
βc : Empirically calibrated value

(5)

Eqs. (4) and (5) will be used as bandwidth function Bc
lk() and cost

function C c
lk(), respectively, in Section 3.2.

3.1.3. Network modeling
A network edge is the edge linking a NIC node and a logical des-

tination node, and it has attributes of a throughput function and a
cost function. In order to simplify the problem, only TCP is consid-
ered and a NIC is assumed to have a preassigned protocol property
associated with corresponding throughput function.

Several throughput models for parallel TCP streams have been
proposed to predict the performance. The simplest model is
proposed in [23] and given by Eq. (6).

T ≤ min

NC,

MSS × c
RTT

·
nt
√
p


T : Achievable throughput
NC: Capacity of NIC
MSS: Maximum segment size
RTT : Round trip time
p: Packet loss rate
nt : Number of parallel data transfer streams

(6)

Since MSS×c
RTT ·

1
√
p is a constant, Eq. (6) can be rearranged as α · nt

where α = MSS×c
RTT ·

1
√
p .

The cost function for TCP is given by Eq. (7).

C = βnr
C: CPU load
r: Data flow rate
βn: Empirically calibrated value

(7)

Eq. (6) will be used as bandwidth function Bn
lk, and Eq. (7) will

be used as cost function Cp
lk in Section 3.2.

3.2. Problem formulation

In order to simplify the problem, the following assumptions are
made:

• There is only one machine at each end; Cluster-level modeling
and formulation are discussed in the next section.
• There is a dedicated network path between the sender and the

receiver machine.
• The data rates of all parallel data flows are same. This means

that the total data rate (and data I/O load) is evenly distributed
over current parallel flows. Even though disks attached to the
machine may have slightly different capacities, we assume
homogeneous disk resources in this paper.
• A sender and a receiver have similar hardware such that op-

timization on the sender side is sufficient for end-to-end data
transfer optimization.
• The number of parallel transport protocol (TCP/RoCE) flows can

be greater than the number of parallel data flows from disks.



94 E.-S. Jung et al. / J. Parallel Distrib. Comput. 79–80 (2015) 90–103
Table 1
Notations for problem formulation.

Notation Description

Vs Logical source node
Vd Logical destination node
Nd Number of disks
Nc Number of CPU cores
ns Number of data streams per each disk; integer variable
nt
lk Number of parallel TCP streams on an edge (l, k)

rlk Data rate on an edge (l, k)
Bd
lk(ns) Disk capacity/bandwidth of Vl , a disk node, associated with an edge (l, k)

Bc
lk(ns) Computation capacity of Vl , a computation node, associated with an edge (l, k)

Bn
lk(nt ) Maximum network capacity/bandwidth of Vl , a NIC node, associated with an edge (l, k)

C c
lk(rlk) CPU/Computation cost of Vl , a computation node, associated with an edge (l, k)

Cp
lk(rlk) CPU/Computation cost related to network protocol on Vl , a NIC node, associated with an edge (l, k)
Fig. 3. NERSC host graph model.
Fig. 4. Flow optimization algorithm for single node data transfer (SNDT) problem.

The last assumption means that the system can automatically
adjust the number of network transfer streams if one network
transfer stream is not enough, in order to accommodate the output
data rate from computation nodes. For example, GridFTP [2] use
multiple logical TCP flows, called parallelism, per one data stream
to overcome the limitation of TCP protocol in high-bandwidth
high-latency networks.

The overall problem-solving procedure is as follows.

• Compute parameters of capacity functions based on empirical
data.
• Formulate the modified multicommodity flow problem based

on the capacity/cost functions on edges.
• Find a solution including the number of parallel flows, the num-

ber of required CPUs, and the number of NICs using linear pro-
gramming solver, cplex [22].
• Determine the number of parallel TCP/RoCE flows based on the
amount of flows on network edges.

The graph model as in Fig. 3 can be formally represented by a
graph G = (V , E), where V is a set of vertices, and E is a set of
edges.

Table 1 gives a list of notations for mathematical formulations,
and the complete formulation is described in Fig. 4. The formula-
tion in Fig. 4 ismixed-integer convex programming (MICP) since ns,
the number of data streams, is integer and the bandwidth function
Bd
lk is approximated by quadratic functions.
The objective function is given in Expression (8), which is to

maximize overall throughput of data transfer. Expression (10) sets
the range of the number of data streams per disk. Expression (11)
is a bandwidth/capacity constraint on the edges, where rlk denotes
data rate on an edge (l, k) and bandwidth functions are chosen de-
pending on the edge type. The flow conservation constraint given
by Eq. (12) ensures that the sum of incoming data rates should be
same as that of outgoing data rates at every node. In special cases
such as compression computation, the sum of outgoing data rates
can be a fraction of that of incoming data rates. Expressions (13)
and (14) constrain the total outgoing data rates from the logical
source and to the logical destination node to be greater than or
equal to T , which is to be maximized. In this way, we can get the
solution that maximizes the overall data throughput. The compu-
tation constraints by the number of CPU cores in the systemand the
number of data flows is given by Expression (15). Note that the for-
mulation assumes a circumstance where the number of data flows
per disk is the same, but the formulation can be easily extended to
reflect different numbers of data flows per disk by assigning sepa-
rate variables per disk.

4. Enhancing performance with data compression

In this section, we present a novel software architecture
based on the Globus XIO framework for enhanced data transfer
throughput andmodified formulations in accordancewith the new
software architecture.



E.-S. Jung et al. / J. Parallel Distrib. Comput. 79–80 (2015) 90–103 95
Fig. 5. GridFTP throughput when using popenwith ‘tar cfz’ option.

4.1. Motivation

In Section 3, we described model-based optimization algo-
rithms for disk-to-disk data flows over 100 Gb/s wide-area net-
works.Weassumed that a certain data flow is not split in the course
of data transfer in our graph model shown in Fig. 2. Accordingly,
all the bandwidth function of edges in our graph model are either
constants, i.e., infinity, or functions of the number of data streams
per each disk. The assumption regarding our data flow model is
based on the actual implementation of GridFTP [2]. The Globus XIO
framework deployed by GridFTP, which is described in Section 2.1,
is consistent with our graph model with unsplittable data flows to
some extents. Our graphmodel in particularmatcheswell with the
Globus XIO framework since one transform driver in an XIO driver
stack can bemapped to one computation node in the graphmodel.

One noticeable observation from experiments is that a variable
number of data flows per layer may help improve data transfer
throughput. Fig. 5 shows the throughput of data transferwith com-
pressionwhen aGridFTP popendriver [14] is used in theGlobusXIO
framework. The throughput hits the ceiling of disk I/O bandwidth
when the number of threads is 5 since the disk I/O bottleneck indi-
cated by the thin solid line in Fig. 5 getsworse as the number of data
reads/threads grows. If we can assign a single thread for disk reads
independent of subsequent compression threads, we canmaintain
the disk I/O bottleneck as constant as a thick solid line in Fig. 5 and
we may be able to achieve ideal throughput indicated by the in-
creasing dashed line in Fig. 5.

4.2. A novel software architecture for enhanced data transfer
throughput

We first present our new architecture and then describe the
concrete data flow problem along with optimization algorithms.

4.2.1. Variable data flows per driver
Basically, the Globus XIO framework is a flexible software I/O

stack in which any software drivers corresponding basic I/O func-
tions can be added or removed for a customized use. For example,
Fig. 6a shows that the Globus XIO framework is set up with three
software drivers such that data are read from file systems and are
sent through TCP protocol after compression at the sender side.
Even though the Globus XIO framework is mainly used by GridFTP,
it can be combined with any applications, which want to send or
receive data in a flexible way, as libraries.

The Globus XIO framework is implemented through a registra-
tion of four basic I/O functions (open/close/read/write) and callback
functions. For example, if an application with the Globus XIO stack
(a) Current XIO stack.

(b) New XIO stack.

Fig. 6. Current vs. new XIO stack architecture.

as in Fig. 6a calls an open() function, the framework ensures that
registered open() functions of drivers are called in the order of TCP,
Compression, and File layers. It also ensures that callback functions
are called in the reverse order if they are set in the course of the
previous function calls after open() is successfully executed at the
bottom driver, i.e., File driver.

However, the current Globus XIO framework does not exploit
data parallelism effectively. Current implementation is based on a
single thread, which has a lot of room for improvement. Depending
on the properties of a driver and system configuration, the optimal
number of threads may vary. The optimal number of threads
for File driver may be one if a file system is established on a
single physical disk since multiple reads from a single disk usually
degrade the overall system throughput. In contrast, the optimal
number of threads for Compression driver may be equivalent to
the number of cores in a system since compression is a compute-
intensive job and partitioned data for multiple threads will help
improve the overall system throughput.

We propose a novel Globus XIO framework where variable
multiple threads are deployed according to properties of drivers
as in Fig. 6b. This can be implemented through multi-threaded
read/write functions of a driver where the number of threads can
be adjusted dynamically and each thread will handle its own par-
titioned data among the whole data. Consequently, the number of
threads equals the number of parallel data flows.

4.3. Optimizing data transfer with data compression

In this section, we investigate how variable data flows per layer
in the Globus XIO framework affect the overall performance and



96 E.-S. Jung et al. / J. Parallel Distrib. Comput. 79–80 (2015) 90–103
Fig. 7. Variable data flow graph model.
Table 2
Additional notations.

Notation Description

Nsrc Number of hosts at the source cluster
Ndst Number of hosts at the destination cluster
Ltotal Total number of layer
Li A set of nodes at layer i, 0 ≤ i < Ltotal
ni Number of data flows at layer i, 0 ≤ i < Ltotal; integer variable
Mi Maximum number of data flows at layer i, 0 ≤ i < Ltotal; integer

variable

how we can optimize the new Globus XIO framework via mathe-
matical formulations. Especially, we focus on a data compression
Globus XIO driver where multiple data flows using multi-threads
have a large impact on the performance, and develop optimization
algorithms for cluster-to-cluster data transfers.

4.3.1. Problem formulation for enhanced data compression
We can extend the formulation for SNDT problem in Fig. 4 such

that the extended formulation can take into account variable flows
per layer. Fig. 7 shows how we can assign nodes to a layer Li and
we associate the number of data flows ni with the layer Li. In
Table 2, we list up additional notations including ni and Li for the
formulation.

The complete MICP formulation is described in Fig. 8. Eq. (20)
is added compared with the previous formulation in Fig. 4. The
number of data flows at each layer i is defined as ni, and bandwidth
function is defined by ni as in Eq. (19).

5. Cluster-wise end-to-end data transfer

In this section, we present an intelligent resource-provisioning
mechanism for data transfers from a cluster of size m to another
cluster of size n, called m-to-n data transfer.

5.1. Problem statement

The cluster-to-cluster data transfer (CCDT) problem is different
from the single-node data transfer (SNDT) problem in Section 3.
The CCDT problem in this paper takes into account variable data
flows per layer and it also seeks the optimal number of hosts at
both ends of the clusters, when the maximum numbers of hosts of
both clusters are given, as well as the optimal number of variable
data flows per layer to achievemaximumdata transfer throughput.
We assume that all the hosts of a cluster are homogeneous in terms
of hardware configuration.
5.2. Algorithms for the CCDT problem

Through the algorithm in Fig. 8, we can determine the max-
imum throughput of a single host at both ends, Thrsrc_single,
Thrdst_single, which are the throughput of a source host and the
throughput of a destination host, respectively. ThrNsrc_single and
ThrNdst_single are network throughput corresponding to Thrsrc_single
and Thrdst_single. Network throughput is the data transfer rate over
the network. Thus host throughput is usually greater than network
throughput when data compression is deployed. Since we assume
homogeneous hosts in a cluster, we can simply match source and
destination nodes based on throughput as in Algorithm 1. The net-
work bandwidth, BW , is also given as an input to the algorithm.

Algorithm 1 Node determination algorithm for cluster-to-cluster
data transfer (CCDT) problem
Input: Nsrc,Ndst , Thrsrc_single, Thrdst_single, ThrNsrc_single, BW
Output: nsrc, ndst

1: nsrc, ndst ← 0
2: while ndst < Ndst do
3: ndst ← ndst + 1
4: if Thrdst_single < Thrsrc_single then
5: if BW − ThrNsrc_single < 0 then
6: return;
7: end if
8: nsrc ← nsrc + 1
9: BW ← BW − ThrNsrc_single

10: else
11: Increase nsrc up to by ⌊Thrdst_single/Thrsrc_single⌋ while

decreasing BW in the same way in lines 5 through 9.
12: end if
13: end while

6. Experimental evaluation

6.1. Disk to disk transfer on high-speed networks

Wehave conducted experiments on an ESnet 100G testbed [24]
in two locations: NERSC (Oakland, CA) and StarLight (Chicago, IL).
Fig. 9 shows the detailed configuration of the testbed. At NERSC,
there are 5 hosts of three different hardware configurations. Three
hosts, nersc-diskpt-1, nersc-diskpt-2, and nersc-diskpt-3, have
Intel Xeon Nehalem E5650 (2× 6 = 12 cores), multiple 10G NICs,
and 4 RAID 0 sets of 4 drives. The other two hosts do not have RAID
drives but have only a local disk. On the other hand, there are 3



E.-S. Jung et al. / J. Parallel Distrib. Comput. 79–80 (2015) 90–103 97
Fig. 8. Variable flow optimization algorithm.

hosts without disk arrays at StarLight. These hosts have 2 AMD
6140 (2 × 8 = 16 cores) and multiple 10G NICs, but do not have
RAID disks. The hosts at StarLight have only local disks, which are
slow (i.e., ∼300 MB/s) and thus cannot saturate even a 10G link.
For this reason, we conducted disk-to-memory tests where all data
flows departing from hosts at NERSC are directed to /dev/null on
hosts at StarLight so that we can assume that the hosts at StarLight
have the same disks as those of the hosts at NERSC.

We have chosen various sizes of datasets including lots of small
files (LOSF) dataset for evaluation of optimizing the end-to-end
data transfer rates. We use four different datasets—ten thousands
of 1 MB files, one thousand 10 MB files, one hundred 100 MB files,
and ten 1 GB files such that total amount of each dataset would
be around 10 GB. The files were synthetically generated using
/dev/urandom in Linux.

To measure the disk performance, we use dd and iozone [25]
as disk I/O benchmark tools. In addition, we use nmon [26] and
Fig. 10. Disk throughput at NERSC using dd: similar disk throughput with varying
block size.

netperf [27] as benchmark tools to measure CPU load and network
performance, respectively.

6.1.1. Subsystem tests for model parameter setting
We first conducted basic disk I/O performance tests using dd

disk utility to obtain baseline performance of disk throughputs.
Fig. 10 shows the disk read throughputs (∼500 MB/s) of 4 RAID
sets attached to hosts at NERSC. The theoretical upper limit of each
RAID disk is around 1.2 GB/s since the RAID disk is composed of
four disks with 300MB/s read performance. Even though there are
performance variances among disks, we ignore the variances for
simplicity in this paper.

Next, we measured the multithread disk read performance de-
pending on file size and the number of threads to determine
the value of α, γ in Eq. (3). Fig. 11 shows that disk throughput
decreases as the number of streams increases regardless of appli-
cations’ read unit sizes (i.e., 1MB and 10MB).We conducted exper-
iments in case of sequential disk read. Eq. (3) determined by these
results would be Bd

lk(·) in Fig. 4 where ns equals L, and l is a disk
node.

However, as Fig. 12 shows, the aggregate disk throughput using
multiple disks does not scale linearly due to channel contention.
Fig. 9. ESnet 100G testbed.



98 E.-S. Jung et al. / J. Parallel Distrib. Comput. 79–80 (2015) 90–103
Fig. 11. Disk throughput at NERSC using iozone: decreasing disk throughput with
increasing number of data streams.

Fig. 12. Multiple disk throughput at NERSC using iozone: increased throughput
using multiple disks, but slightly under the total sum of individual disks.

Fig. 13. GridFTP throughput: increasing throughput until disk throughput or data
contention among multiple data streams becomes a bottleneck.

We model the channel contention using a data channel node and
associated bandwidth function as in Eq. (3).

We measured the application (i.e., GridFTP) throughput while
varying the number of data streams as in Fig. 13. We can model
GridFTP throughput through Eq. (4) by ignoring the decreasing
throughput after hitting the peak because that is due to disk bottle-
neck which is already modeled by disk edges. Even though the data
movement tool GridFTP is the only application used for the end-
to-end data transfers in this paper, we can model any applications
such as compression in a similar way through Eqs. (4) and (5).
Regarding network edges, Fig. 14a and b shows the through-
put and CPU load of TCP protocol, respectively. We conducted
memory-to-memory transfer using a single 10 Gb NIC, and we
measured these TCP performance results by netperf. Fig. 14a shows
that network transfer throughput is saturated with 3 TCP streams,
and is near the full capacity of the 10 Gb NIC. Without 10 Gb ca-
pacity limitation, the TCP throughput with 3 TCP streams should
be beyond 10 Gb. Fig. 14b also shows that CPU load is extraordinar-
ily high near 10 Gb/s due to contention among 3 streams. We note
that 100% CPU corresponds to a full usage of one CPU out of multi-
ple CPUs in a host. Even though such non-linear behaviors happen,
we can capture them using linear regression (i.e., Eqs. (6) and (7))
since this is simple and more conservative. For example, the linear
function that captures TCP CPU load in Fig. 14will overestimate the
CPU load for TCP traffic more than the actual CPU load.

6.1.2. Results and discussion
We have compared our model-based optimization approach

with two cases: (1) GridFTP with only-fast option, (2) GridFTP with
auto-tuning optimizations currently used by Globus Online [9], as
these are the commonly used approaches by the end users for
GridFTP data movement. Globus Online’s auto-tuning algorithm
uses different GridFTP optimization options depending on file size.
If the number of files is more than 100 and an average file size
smaller than 50 MB, it uses GridFTP with concurrency = 2 files,
parallelism = 2 sockets per file, and pipelining = 20 requests
outstanding at once. If the file size is larger than 250 MB, Globus
Online uses options of concurrency = 2, parallelism = 8, and
pipelining = 5. In all other cases, the default setting is used:
concurrency= 2, parallelism= 4, and pipelining= 10.

Fig. 15 shows the experimental results of all three cases. The
data transfer experiments have been done fromNERSC to StarLight
by varying the number of hosts at NERSC from 1 to 5 and the num-
ber of hosts at StarLight from 1 to 3. The numbers of hosts at NERSC
and StarLight are kept same except when the number of hosts
at NERSC is greater than 3. In such cases, the number of hosts at
StarLight is set to 3. The disk-to-disk data transfer on this testbed
is bottlenecked by disks while each host has multiple 10 Gb/s NICs
and the wide-area network links have enough bandwidth of 100
Gb/s. In such cases, we can achieve higher throughput by utilizing
multiple hosts together with optimized data transfer. We compute
the data transfer throughput by measuring the total time taken for
transferring certain datasets. Globus Online outperforms the naive
GridFTP especially in the cases of 1 MB and 10 MB datasets. Our
model-based optimizations are 3–4 times faster than Globus On-
line in most cases, and 8 times faster than Globus Online, particu-
larly, in the case of 1 MB datasets. It is mainly because our model
can effectively identify the number of data flows based on disk
throughput performance models and utilize data flow parallelism
through multiple disks. For instance, with -cc = 2 options, Globus
Online can utilize only two data streams fromdisks, which has a lot
room for improvement, and cannot utilize the advantages of mul-
tiple disks. Based on models, our formulation in Fig. 4 could find
the proper number of data flows, 8, 6, 3, 2 in the case of 1 MB, 10
MB, 100 MB, 1 GB files, respectively. The data transfer throughput
scaleswell as the number of hosts at NERSC increases up to 3 hosts.
In case of 4 and 5 hosts at NERSC, the increasing rate slows down
because those hosts have only local disks. In addition, our formu-
lation could find a solution suggesting using multiple NICs in case
that the aggregate throughput is beyond the capability of a 10G
NIC.

The disk-to-disk data transfer on the ESnet 100G testbed suffers
from disk bottlenecks in case of big files over 100 MB as shown
in Fig. 13. The emerging high-performance solid state storages
(SSDs) can improve the overall data transfer throughput. The
high-performance SSDs can affect our model-based optimization



E.-S. Jung et al. / J. Parallel Distrib. Comput. 79–80 (2015) 90–103 99
(a) TCP throughput. (b) TCP CPU load.

Fig. 14. TCP protocol characteristics.
(a) Default GridFTP transfer. (b) Globus Online transfer.

(c) Model-based transfer.

Fig. 15. Data transfer throughput comparison.
approach in twoways. First, the disk performancemodel for SSD is
different from themodel for HDD. In case of HDD RAID disks in our
paper, the read performance decreases as the number of threads
increases as shown in Figs. 11 and 12. The read performance
of SSDs would show less performance degradation with more
numbers of threads since an SSD does not have a mechanical
arm to read and write data and accordingly needs less wait time
between consecutive disk service requests. The read performance
of SSDs can still be modeled by the same equation as Eq. (1). In
contrast, it is more complicated to model the write performance
of SSDs than HDD because a write operation of SSDs is involved
in additional erase and wear-level management operations [28].
However,we can alsomodel thewrite performance as long as there
are analytical or empirical models that can be approximated by
linear functions. Second, the high-performance SSDs will make the
disk part not bottlenecked any more in overall disk-to-disk data
transfer. Consequently, the high-performance SSDs will result in
less numbers of disks and more other resources such as CPU and
network to use to achieve higher data transfer throughput than
HDDs.

The advantages of using model-based optimization formula-
tions are as follows: (1) it can suggest the future hardware plan
optimized for overall data transfer throughput just by simulating
different configurations of hardware as well as software, (2) it can



100 E.-S. Jung et al. / J. Parallel Distrib. Comput. 79–80 (2015) 90–103
Fig. 16. Data transfer infrastructure.

Fig. 17. Storage system benchmark via IOR at NERSC.

beusedby systems such asGlobusOnline andother intelligent data
transfermanagers to adaptively optimize transfers for varying CPU
resource availability and network status, and (3) it can provide ba-
sic models for simulating bulk data movement in the next genera-
tion networks.

6.2. Cluster-wise data transfer with data compression

Wehave performed experiments on data transfer nodes (DTNs)
at NERSC [29] and Tukey at Argonne as in Fig. 16. There are four
DTNs at NERSC and Tukey has a total of 96 compute nodes, where
each node has 16 CPU cores and two NVIDIA Tesla M2070 GPUs.
Data are transferred from Tukey to NERSC where the number of
hosts at Tukey varies from 1 to 4 and the number of hosts at
NERSC varies from 1 to 12. One thing that is distinguished from
the previous testbed in Fig. 9 is that the storage systems of both
clusters are shared parallel file systems.

We use FLASH, an astrophysics simulation, datasets to evaluate
cluster-wise data transfer with data compression. FLASH datasets
consist of several datasets, andwe pick three datasets such as temp,
pres, and velx, which represent high compression ratio dataset,
middle compression ratio dataset, and low compression ratio
dataset, respectively.

6.2.1. System modeling for parallel file systems and compression
The testbed in Fig. 16 is different from the previous testbed in

Fig. 9 in two aspects. First, the new testbed has parallel file sys-
tems as storage systems of both clusters. Second, data compres-
sion computation is deployed for improving overall data transfer
throughput in case of network bottleneck.

We first measured performance of shared file systems at both
clusters using IOR [30], a parallel file system benchmark tool.
Fig. 18. Storage system benchmark via IOR at Tukey.

Fig. 19. blosc compression ratio with regard to FLASH datasets [19].

Figs. 17 and 18 show the file system performance, when file
read/write size is 10 MB, at NERSC and Tukey, respectively. Only
read performance is considered at Tukey whereas only write
performance is considered at Tukey since data are transferred
from Tukey to NERSC. The storage system performance is modeled
using linear or quadratic regression since there is no well-known
mathematical analytic model for parallel file systems.

We use the blosc compression algorithm [31] which has bet-
ter performance compared with typical compression algorithms
in terms of both compression ratio and compression time. Fig. 19
shows that the blosc compression ratios of FLASH/temp, FLASH/
pres, and FLASH/velx are 69.89, 4.49, and 2.46, respectively. We
also measured blosc compression/decompression throughput by
varying the number of threads up to the number of cores at the
host to model the throughput using linear functions. We noticed
that the throughput decreases beyond a certain point due to inter-
nal blosc compression algorithm operations as in Fig. 20, and we
set the maximum number of threads to that point (e.g. 8 at Tukey)
in order to model the throughput simply using linear functions.

6.2.2. Results and discussion
We first measured the performance of data transfer between

single hosts at each cluster in order to compare with the
performance of cluster-to-cluster data transfer.We thenmeasured
the performance of cluster-to-cluster data transfer by increasing
the number of data transfer processes from 1 to 12 at each
cluster regarding three datasets, i.e., FLASH/temp, FLASH/pres, and
FLASH/velx. Only one data transfer process is assigned to one host
at Tukey since one process is enough to achieve the maximum
throughput of one host, which will be explained in the following.



E.-S. Jung et al. / J. Parallel Distrib. Comput. 79–80 (2015) 90–103 101
Fig. 20. blosc throughput in terms of the number of threads regarding randomdata.

Fig. 21. Memory-to-memory data transfer between single hosts.

On the other hand, multiple data transfer processes are assigned
to one host at NERSC in a round-robin fashion when the number of
process is beyond 4 since the number of DTNs at NERSC is limited
to 4. We also varied the number of compression threads from 1 to
8 to show how the parallelism of data flow affect the overall data
transfer throughput. Lastly, we discuss our variable optimization
algorithms’ solutions with respect to the measured performance
results.

Fig. 21 shows the maximum data transfer throughput between
single nodes at each cluster. This is a memory-to-memory data
transfer result without data compression and the throughput is
limited by capacity of NICs, 1 Gb/s (∼120 MB/s) of hosts at Tukey.

The experimental results of memory-to-memory data transfer
when multiple nodes are utilized are shown in Fig. 22 where Nor-
mal indicates data transfer without data compression and Com-
pressionX indicates data transfer with data compression using X
threads. The results show that the performance scales well with
regard to the number of nodes at Tukey in all cases. Since the net-
work link between NERSC and Tukey is 10 Gb/s (∼1.2 GB/s), nor-
mal data transfer seems to achieve the maximum throughput us-
ing 12 hosts at Tukey. The results also show that the performance
of all three FLASH datasets is similar when one thread is used for
compression while the throughput of the FLASH/velx dataset with
8 threads is almost 1.5 times better than the throughput with 1
thread. Compared with the normal case, the throughput of the
FLASH/velx dataset is 8 times better, which means data transfer
with optimized data compression helps improve throughput dras-
tically in case of limited network bandwidth and/or NIC capacities.

Figs. 23 through 25 show disk-to-disk data transfer through-
puts. All the results show that the throughput of normal disk-to-
disk data transfer does not scale after 10 nodes and even decreases.
Fig. 22. Memory-to-memory data transfer.

Fig. 23. Disk-to-disk data transfer (FLASH/temp).

Fig. 24. Disk-to-disk data transfer (FLASH/pres).

Considering that the 10 Gb/s link between NERSC and Tukey is
shared bymany users and thememory-to-memory transfer exper-
iments were conducted at different time periods, the performance
decrease in case of normal disk-to-disk data transfer is mainly
due to network link bottleneck. Such situations can be seen in the
case of FLASH/velx data transfer with 6 or 8 compression threads.
Since the compression ratio of FLASH/velx is 2.46, the data transfer
of FLASH/velx with data compression saturates the network link
when the number of nodes is 10. In case of other datasets such
as FLASH/temp and FLASH/pres, data transfers do not saturate the
network link due to higher compression ratio and scale well with
regard to the number of nodes.

We compare the experimental results with optimized through-
put based on our algorithms in Fig. 8 and Algorithm 1. Fig. 26



102 E.-S. Jung et al. / J. Parallel Distrib. Comput. 79–80 (2015) 90–103
Fig. 25. Disk-to-disk data transfer (FLASH/velx).

shows the data flow graph model for the CCDT problem. Using
formulations in Fig. 8, we can get the numbers of compression
threads, 8, 4, and 6, for FLASH/temp, FLASH/pres, and FLASH/velx,
respectively. In addition, we can get the maximum throughput for
single-host data transfer. These numbers are used to compute the
required number of hosts on each cluster. We can get the num-
bers of hosts at NERSC and Tukey, (4, 12), (4, 12) and (3, 10) for
FLASH/temp, FLASH/pres, and FLASH/velx, respectively. In particu-
lar, (3, 10) for FLASH/velx can achieve 1.3 GB/s, which is compara-
ble to throughput of (4, 10) in the experiments. The solutions based
on our approach are consistent with experimental results. Please
note that DTNs at NERSC are in production and shared by many
data transfers; we used the network bandwidth between NERSC
and Argonne probed just before the algorithms are run to make
sure the results reflect the current system status.

6.3. Deployment in real systems

As described in the paper, we need two steps to get the opti-
mized solution. First, we have to build system models by running
some system benchmarks such as disk throughput and network
throughput measurement. Even though they take long time (a few
hours up to one or two days), the benchmark tests need to be per-
formed only when there is a system change such as new disk in-
stallation. In addition, this step can be automated through scripts
if needed. The dynamic factors such as compression rates need to
be updatedmore often, but even in such cases, the ratio of the time
spent on tests to the time taken for transfer will be quite small and
the tests can be done concurrently when other data transfers are
being fulfilled. If the number of parameters affecting the perfor-
mance is high, and exhaustive benchmark testing to explore the
whole search space is not possible, we can use surrogate models
such as support vector machines to predict with small sets of col-
lected data, which is out of scope of the paper. Second, we have
to run optimization solver such as CPLEX [22] to get the solution.
Since the problem size is small (the graph consists of tens of nodes
and tens of edges), the running time is a few seconds, which is
within reasonable time window. Overall, the proposed method is
useful in practice.

Regarding interplay of flows, we can think of the following
three cases. As for interplay of flows in disk I/O, processes are
usually allocated fair shares of CPU, and hence they have equal
probability of issuing disk I/O requests. However, if processes other
than disk I/O processes in our model occupy the most resources
(i.e. overloaded state) or share resources with processes in our
model, disk I/O processes would not behave as models suggest.
The more sophisticated models for disk I/O considering system-
wide circumstances are needed for accuratemodeling. Interplay in
computing can also be addressed by similar approaches. Regarding
interplay in networks, TCP streams are believed to fairly share a
network link. However, since other network traffics are injected
into the shared networks, similar circumstances to disk I/O can
happen. In order to cope with such situations, the network status
needs to be probed regularly to reflect dynamic variance of
available network bandwidths.

Regarding data compression, datamay be composed ofmultiple
sets of sub-data with different characteristics, it is true that the
current model and formulation cannot cope with such situations.
To address such issues, the data to transfer should be evaluated on
the fly to estimate the data compression ratios, and the formulation
should introduce separate compression ratio parameters for each
flows, which means separate computation nodes for flows from
different disks.

7. Conclusions

We first model all the system components involved in end-
to-end data transfer as a graph. We then formulate the problem
whose goal is to achieve maximum data transfer throughput using
parallel data flows. We also propose a new I/O stack with variable
Fig. 26. Data flow graph model for the CCDT problem.



E.-S. Jung et al. / J. Parallel Distrib. Comput. 79–80 (2015) 90–103 103
data flows and cluster-wise optimization algorithms to enhance
data transfer throughput using data compression. Our proposed
formulations and solutions are evaluated through experiments
on the two different testbeds, the ESnet 100G testbed and a
cluster data transfer testbed between NERSC and Argonne. The
experimental results on the ESnet 100G testbed show that our
approach is around four times faster than Globus Online for most
datasets. The experimental results on the cluster data transfer
testbed show that the throughput of cluster data transfer with
data compression is up to four times faster than the throughput of
normal cluster data transfer and 10 times to 20 times faster than
single host data transfer. It is promising that flexible throughput
optimization algorithms can detect the performance bottleneck
and can suggest parameters such as the number of nodes and
whether or not to use compression. This work can be automated
through periodic system profiling and resource provisioning based
on the proposed optimization algorithms.

Acknowledgment

This work was supported by the US Department of Energy,
Office of Science, Advanced Scientific Computing Research, under
Contract DE-AC02-06CH11357.

References

[1] A. Rajendran, P. Mhashilkar, H. Kim, D. Dykstra, I. Raicu, Optimizing large data
transfers over 100 Gbps wide area networks, 2012.

[2] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, I. Fos-
ter, The globus striped GridFTP framework and server, in: Proceedings of the
2005ACM/IEEE Conference on Supercomputing, SC’05, IEEE Computer Society,
Washington, DC, USA, 2005, pp. 54–64. http://dx.doi.org/10.1109/SC.2005.72.

[3] A. Shoshani, A. Sim, J. Gu, Grid Resource Management, Kluwer Academic
Publishers, Norwell, MA, USA, 2004, pp. 321–340.

[4] W. Allcock, J. Bresnahan, K. Kettimuthu, J. Link, The Globus extensible
input/output system (XIO): a protocol independent IO system for the grid,
in: Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th
IEEE International, 2005, pp. 8–15. http://dx.doi.org/10.1109/IPDPS.2005.429.

[5] E. Kissel, M. Swany, Evaluating high performance data transfer with
RDMA-based protocols in wide-area networks, in: Proceedings of the 2012
IEEE 14th International Conference on High Performance Computing and
Communication, HPCC’12, Washington, DC, USA, 2012, pp. 802–811.
http://dx.doi.org/10.1109/HPCC.2012.113.

[6] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, I. Foster, Gridftp pipelining,
2007.

[7] R. K., et al., Lessons learned from moving Earth system grid data sets over a
20 Gbps wide-area network, in: 19th ACM International Symposium on High
PerformanceDistributed Computing, HPDC’10, ACM,NewYork, NY, USA, 2010,
pp. 316–319. http://dx.doi.org/10.1145/1851476.1851519.

[8] Globus toolkit website, http://globus.org/toolkit/, 2013. Last visited on
Nov.11.2013.

[9] B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy, R. Kettimuthu, J.
Kordas, M. Link, S. Martin, K. Pickett, S. Tuecke, Software as a service for data
scientists, Commun. ACM 55 (2012) 81–88.

[10] E. Yildirim, J. Kim, T. Kosar, How GridFTP pipelining, parallelism and
concurrency work: A guide for optimizing large dataset transfers, in: High
Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC
Companion:, 2012, pp. 506–515.
http://dx.doi.org/10.1109/SC.Companion.2012.73.

[11] D. Gunter, R. Kettimuthu, E. Kissed, M. Swany, J. Yi, J. Zurawski, Exploiting
network parallelism for improving data transfer performance, in: High
Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC
Companion:, 2012, pp. 1600–1606.
http://dx.doi.org/10.1109/SC.Companion.2012.337.

[12] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, I. Foster, GridFTP pipelining,
Teragrid, 2007.

[13] J. Bresnahan, I. Foster, An architecture for dynamic allocation of compute
cluster bandwidth (MS thesis), Department of Computer Science, University
of Chicago, 2006.

[14] R. Kettimuthu, S. Link, J. Bresnahan, M. Link, I. Foster, Globus XIO pipe open
driver: enabling GridFTP to leverage standard unix tools, in: Proceedings of the
2011 TeraGrid Conference: Extreme Digital Discovery, TG’11, ACM, New York,
NY, USA, 2011, pp. 20:1–20:7. http://dx.doi.org/10.1145/2016741.2016763.

[15] R. Kettimuthu, W. Liu, J.M. Link, J. Bresnahan, A GridFTP transport driver
for Globus XIO, in: International Conference on Parallel and Distributed
Processing Techniques and Applications, PDPTA, 2008, pp. 843–849.
[16] Eun-Sung Jung, Rajkumar Kettimuthu, Venkatram Vishwanath, Toward
optimizing disk-to-disk transfer on 100G networks, in: IEEE International
Conference on Advanced Networks and Telecommuncations Systems (ANTS),
ANTS’13, IEEE Computer Society, Chennai, India, 2013.

[17] E. Yildirim, T. Kosar, End-to-end data-flow parallelism for throughput
optimization in high-speed networks, J. Grid Computing 10 (2012) 395–418.

[18] B. Welton, D. Kimpe, J. Cope, C.M. Patrick, K. Iskra, R.B. Ross, Improving
I/O forwarding throughput with data compression, in: CLUSTER’11, 2011,
pp. 438–445.

[19] H. Bui, V. Vishwanath, H. Finkel, K. Harms, J. Leigh, S. Habib, K. Heitmann, M.E.
Papka, Scalable parallel I/O onBlueGene/Q supercomputer using compression,
topology-aware data aggregation, and subfiling, in: The Proceedings of
the 22nd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, PDP 2014, 2014.

[20] T. Bicer, J. Yin, D. Chiu, G. Agrawal, K. Schuchardt, Integrating online
compression to accelerate large-scale data analytics applications, in: 2013 IEEE
27th International Symposiumon Parallel Distributed Processing, IPDPS, 2013,
pp. 1205–1216.

[21] E.K. Lee, R.H. Katz, An analytic performance model of disk arrays, SIGMETRICS
Perform. Eval. Rev. 21 (1993) 98–109.

[22] cplex website, http://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/, 2013. Last visited on Nov.11.2013.

[23] T. Hacker, B. Athey, B. Noble, The end-to-end performance effects of parallel
TCP sockets on a lossy wide-area network, in: Parallel and Distributed
Processing Symposium., Proceedings International, IPDPS 2002, Abstracts and
CD-ROM, 2002, pp. 10–19. http://dx.doi.org/10.1109/IPDPS.2002.1015527.

[24] ESnet 100G testbed, http://www.es.net/RandD/100g-testbed/, 2013.
Last visited on Nov.11.2013.

[25] iozone website, http://www.iozone.org/, 2013. Last visited on Nov.11.2013.
[26] nmon website, http://nmon.sourceforge.net/, 2013.

Last visited on Nov.11.2013.
[27] netperf website, http://www.netperf.org/netperf/, 2013.

Last visited on Nov.11.2013.
[28] P. Desnoyers, Analytic modeling of SSD write performance, in: Proceedings

of the 5th Annual International Systems and Storage Conference, SYSTOR’12,
ACM, New York, NY, USA, 2012, pp. 1–10.
http://dx.doi.org/10.1145/2367589.2367603.

[29] NERSC website, http://www.nersc.gov, 2013. National Energy Research
Scientific Computing Center, Last visited on Nov.11.2013.

[30] IOR website, http://sourceforge.net/projects/ior-sio/, 2013. Last visited on
Nov.11.2013.

[31] blosc website, http://blosc.pytables.org/trac, 2013.
Last visited on Nov.11.2013.

Eun-Sung Jung is a postdoctoral researcher in the Math-
ematics and Computer Science Division at Argonne Na-
tional Laboratory. He earned a Ph.D. from the Department
of Computer and Information Science and Engineering at
the University of Florida. He also received B.S. andM.S. de-
grees in electrical engineering fromSeoul National Univer-
sity, Korea, in 1996 and 1998, respectively. He also held a
position of a research staff member at Samsung Advanced
Institute of Technology from 2011 to 2012. His current
research interests include cloud computing, network re-
source/flow optimization, and real-time embedded sys-

tems. He has published over 10 papers in conference proceedings and journals.

Rajkumar Kettimuthu is a project leader in the Mathe-
matics andComputer ScienceDivision at ArgonneNational
Laboratory and a fellow at University of Chicago’s Com-
putation Institute. His research interests include transport
protocols for high-speed networks; research data man-
agement in distributed systems; and the application of
distributed computing to problems in science and en-
gineering. He is the technology coordinator for Globus
GridFTP, a widely used data movement tool. He has pub-
lished over 60 articles in parallel, distributed and high per-
formance computing. He is a senior member of IEEE and

ACM.

Venkatram Vishwanath is an Assistant Computer Scien-
tist in the Mathematics and Computer Science Division
at Argonne National Laboratory. He is also a member of
the Argonne Leadership Computing Facility. He joined Ar-
gonne as an Argonne Scholar and Argonne Director’s Fel-
low in 2009. His areas of research include runtime and
programming models for data-intensive computing, scal-
able algorithms for data movement, scientific data visual-
ization, and performance analysis for parallel applications.
He completed his doctorate degree in computer science in
2009 from the University of Illinois at Chicago. He is also

a Fellow of the Computation Institute at the University of Chicago and an adjunct
professor in the Department of Computer Science at the Northern Illinois Univer-
sity.

http://dx.doi.org/10.1109/SC.2005.72
http://refhub.elsevier.com/S0743-7315(14)00171-3/sbref3
http://dx.doi.org/10.1109/IPDPS.2005.429
http://dx.doi.org/10.1109/HPCC.2012.113
http://dx.doi.org/10.1145/1851476.1851519
http://globus.org/toolkit/
http://refhub.elsevier.com/S0743-7315(14)00171-3/sbref9
http://dx.doi.org/10.1109/SC.Companion.2012.73
http://dx.doi.org/10.1109/SC.Companion.2012.337
http://refhub.elsevier.com/S0743-7315(14)00171-3/sbref13
http://dx.doi.org/10.1145/2016741.2016763
http://refhub.elsevier.com/S0743-7315(14)00171-3/sbref16
http://refhub.elsevier.com/S0743-7315(14)00171-3/sbref17
http://refhub.elsevier.com/S0743-7315(14)00171-3/sbref18
http://refhub.elsevier.com/S0743-7315(14)00171-3/sbref19
http://refhub.elsevier.com/S0743-7315(14)00171-3/sbref20
http://refhub.elsevier.com/S0743-7315(14)00171-3/sbref21
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://dx.doi.org/10.1109/IPDPS.2002.1015527
http://www.es.net/RandD/100g-testbed/
http://www.iozone.org/
http://nmon.sourceforge.net/
http://www.netperf.org/netperf/
http://dx.doi.org/10.1145/2367589.2367603
http://www.nersc.gov
http://sourceforge.net/projects/ior-sio/
http://blosc.pytables.org/trac

	Cluster-to-cluster data transfer with data compression over wide-area networks
	Introduction
	Preliminaries and related work
	Globus Toolkit and GridFTP
	Optimizing data transfer
	Data compression

	Optimizing single-node disk-to-disk data transfer
	System modeling
	Disk modeling
	Computation modeling
	Network modeling

	Problem formulation

	Enhancing performance with data compression
	Motivation
	A novel software architecture for enhanced data transfer throughput
	Variable data flows per driver

	Optimizing data transfer with data compression
	Problem formulation for enhanced data compression


	Cluster-wise end-to-end data transfer
	Problem statement
	Algorithms for the CCDT problem

	Experimental evaluation
	Disk to disk transfer on high-speed networks
	Subsystem tests for model parameter setting
	Results and discussion

	Cluster-wise data transfer with data compression
	System modeling for parallel file systems and compression
	Results and discussion

	Deployment in real systems

	Conclusions
	Acknowledgment
	References


